skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Danciu, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advances in engineering biology, together with growing interest and investment in supporting a bio-based economy in the US, are fueling research and development efforts into genetically engineering organisms for all kinds of different applications. While many of these applications involve using genetically engineered microorganisms in contained, bioreactor-like environments, there is also increasing interest in designing organisms (microbes, plants, insects, animals) for release and deployment in the open environments. This includes genetically modified crops, as well as direct-to-consumer probiotics and organisms designed for environmental remediation. Historically, examples of genetically engineered organisms released in open environments in the US remain limited, aside from GM crops. Industry enthusiasm for releasing genetically engineered microorganisms in particular waned at least partly in response to public controversy surrounding the field testing of Frostban “ice-minus” bacteria on strawberry crops in 1987. Development of living engineered products, together with publicly funded research on environmental transport and fate of engineered microorganisms in open environments, stalled. As a result, our approach to managing engineered microorganisms over the past 40 years has largely defaulted to the biosafety framework for genetic engineering in laboratory contexts, which emerged from the storied 1975 Asilomar meeting. This biosafety framework focuses on technological containment, a framing that prioritizes separation between genetically engineered organisms and the wider world. In this report, we argue that technological containment is insufficient for robust discussion and evaluation of genetically engineered organisms in open, complex environments. We introduce and make the case for a broader lens—which we call social containment—to be included alongside discussions of technological containment. Social containment directs our attention to how the cultural, environmental and political context around a genetically engineered organism (the sociotechnical system) is held together or challenged through its development and commercialization process. In this report, we use the lens of social containment to tell the stories of 11 genetically engineered organisms designed for deliberate release in the US. The cases cover historical and contemporary examples, genetically engineered microbes, plants and animals, and different application contexts. Through these stories, we show how technological, social, economic, legal, spatiotemporal and environmental considerations interact to smooth or disrupt the development process. We argue that this more holistic approach to understanding the relationships between genetically engineered organisms and the world is important in the context of recent, renewed interest in pursuing deliberate release applications. High-level findings emerging across the case studies include: 1) Development and commercialization pathways can look very different across genetically engineered organisms. There isn’t one, single factor that systematically emerges as the most important in determining the fate of a product. Some products have faced significant disruption in their developmental trajectories from different combinations of factors, while others have been more smoothly managed. Across the case studies, we identify factors that can work together to enable or constrain product trajectories. 2) The presence or absence of explicit, technological biocontainment strategies is not a reliable indicator of a successful product. Arguably, the absence of engineered biocontainment has resulted in more successful commercializations across our case studies than products with genetic biocontainment strategies engineered into them. 3) Public and stakeholder views on genetically engineered organisms are highly context-specific. We observe that public trust varies substantially across the case studies in this report, and should not necessarily be seen as a disruptive factor. Sensitivity to existing cultural norms and power dynamics is a key part of successful product development. Through this set of stories, we hope to open up ways for researchers and policy practitioners to think about containment as more than a simple technological concern. We encourage others to use our proposed framework to study their own genetically engineered organisms of interest—historical or contemporary, US-based or international—and we invite reflection on the variety of technological AND social processes by which genetically engineered organisms are controlled and managed in our society. 
    more » « less
    Free, publicly-accessible full text available April 21, 2026